skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hayee, Fariah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nanoparticle surface structure and geometry generally dictate where chemical transformations occur, with higher chemical activity at sites with lower activation energies. Here, we show how optical excitation of plasmons enables spatially modified phase transformations, activating otherwise energetically unfavorable sites. We have designed a crossed-bar Au-PdHxantenna-reactor system that localizes electromagnetic enhancement away from the innately reactive PdHxnanorod tips. Using optically coupled in situ environmental transmission electron microscopy, we track the dehydrogenation of individual antenna-reactor pairs with varying optical illumination intensity, wavelength, and hydrogen pressure. Our in situ experiments show that plasmons enable new catalytic sites, including dehydrogenation at the nanorod faces. Molecular dynamics simulations confirm that these new nucleation sites are energetically unfavorable in equilibrium and only accessible through tailored plasmonic excitation. 
    more » « less